Development and Use of "Fiberless" SMA in the United States

> Richard Steger, P.E. Ingevity

2018 NAPA Conference on SMA Atlanta, GA

- Acknowledgments
- Design of SMA
- Issues with Fibers
- Fiberless SMA
 - Concept
 - Design Techniques
 - Lab & Field Mix Performance Data

Acknowledgements

- Rutgers University (CAIT) Presentation Prep
 - Tom Bennert
- NJ DOT
 - Eileen Sheehy, Robert Sauber, Robert Blight
- Associated Asphalt
 - Ron Corun
- Consultant
 - Frank Fee
- Ingevity VA RT 29 Project cores/testing
 - Bryan Pecht, Dominic Barilla, Pete Truncale, Bill Criqui, Jason Bausano

Stone Matrix Asphalt (SMA)

- Gap graded aggregate blends with cubical shaped aggregate
- Mastic of polymer-modified asphalt binder, mineral filler and fibers
- When produced and placed correctly, known for outstanding performance

"SMA is a simple idea. Find a hard, durable, quality stone, fracture it into roughly cubical shape and of a size consistent with the proposed layer thickness, and then glue the stones together with a durable, moistureresistant mortar of just the right quantity to give stone-to-stone contact among the coarse aggregate particles. For the asphalt technologist, the trick is getting the various parameters right."

Design of SMA Mixes

Design of SMA Mixes

- Due to high asphalt contents, a potential for "draindown" of binder exists
 - Defined as liquid binder running off aggregate surface
 - Results in "fat spots" and segregated areas of high and low binder content

Design of SMA Mixes

- To help reduce the potential of draindown, polymermodified asphalt (PMA) and fibers used with SMA
 - PMA results in better adhesion to aggregate at higher temps than Neat binders (generally higher viscosity)
 - Fibers increase stiffness of mastic by increasing surface area

PMA

PMA

Neat

Issues with Fibers

- Cost fibers and rental equipment
- Fibers need to be separated or "fluffed" prior to addition or clumping can occur
- Metering required and should have "sight glass" to ensure fibers flowing
- Fibers must be included in ignition oven correction factor determination
 - Impossible to separate AC and Fiber changes during production from ignition oven testing

Example of Fiber Issue: "Fiber Ball" in New Jersey SMA

- Found in pavement surface during visual inspection after placement
- Possibly due to the "feeding system" at the asphalt plant

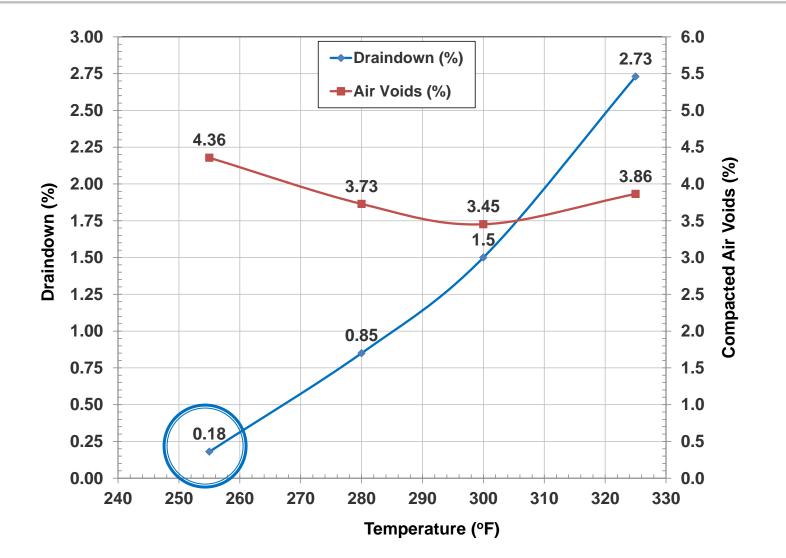
Fiberless SMA Concept & Design

Fiberless SMA Concept

- Fibers used to increase viscosity of mastic (binder+ fines + fibers)
 - Increasing mastic viscosity will make it stick better to aggregate and resist draindown
- Using higher viscosity binder can help increase mastic viscosity
 - As temperature decreases, binder viscosity increases
- Reducing mixture temp will create compaction issues
 - Must couple mixture temp reduction with WMA additive
 - WMA technology that does not influence binder viscosity

Fiberless SMA "Mixture Design"

General methodology


- Use existing SMA design with fibers as starting point
 - (i.e. asphalt content, aggregate blend)
- Determine Draindown (AASHTO T₃05) & compacted air voids after reducing mixture temperature
 - Example: 325, 300, 280, 255°F
 - Design: Aggregates heated 10°F higher than compaction temp compaction temperature used for specific binder grade
- Compare draindown and compacted air voids
- Examine mixing process to ensure coating is taking place (AASHTO T195, Degree of Particle Coating)
- Make mix component adjustments if necessary
 - In general, have found for every 0.1% of cellulose fibers removed, asphalt plant will need to remove same amount of asphalt binder

Design Example #1 – "Sometimes It All Goes Right"

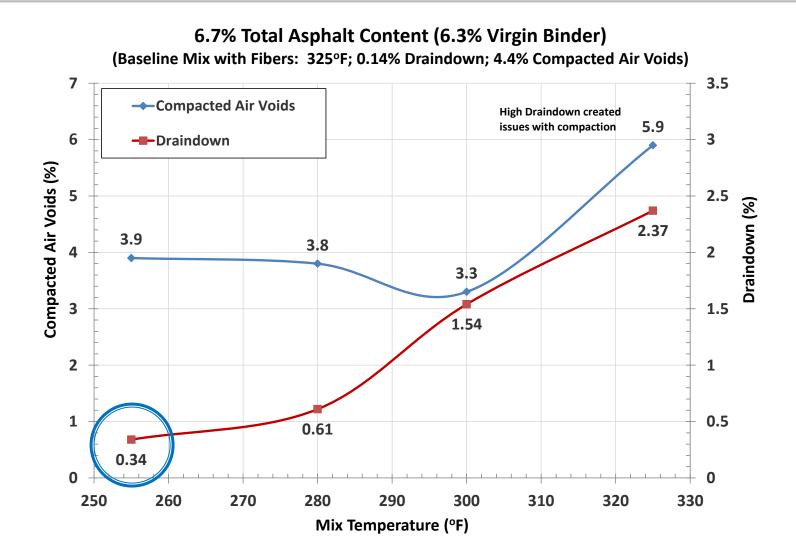
- Determine Optimal Temperature for Fiberless SMA in MD
 - 12.5 mm NMAS SMA
 - 6.5% Asphalt Content
 - PG76-22
 - 0.3% Cellulose Fibers
 - o.o4% Draindown at Design
 - Specification < 0.3%</p>

Washed Gradation		
Screen		% Pass
2″	50.00	100
1 ¹ ⁄2″	37.50	100
1″	25.00	100
3⁄4″	19.00	100
1⁄2″	12.50	96
3/8″	9.50	80
#4	4.75	34
#8	2.36	21
#16	1.18	17
#30	0.600	15
#50	0.300	13
#100	0.150	12
#200	0.075	9.3

Design Example #1: Compacted Air Voids vs Draindown

Design Example #1 - Results

Final Result

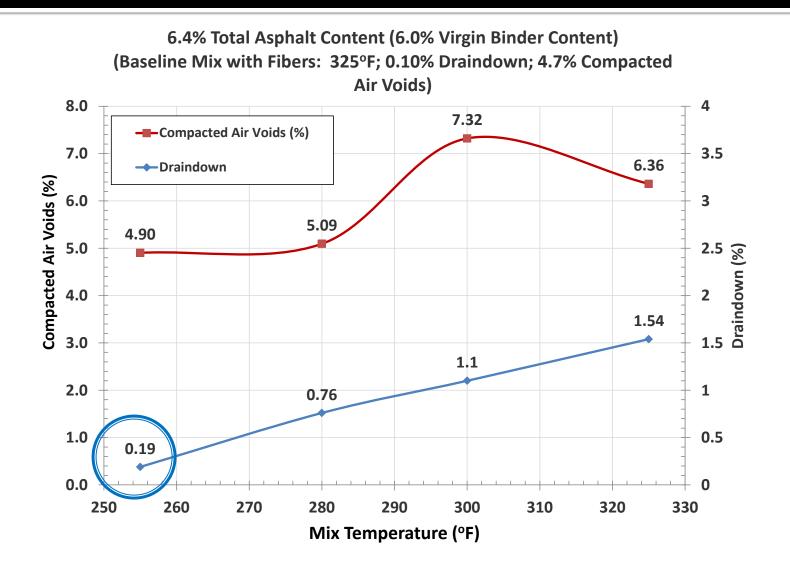

- Optimal temp range for mixture between 255 and 265°F.
- In that range;
 - Air voids slightly above 4%
 - Draindown around 0.2 to 0.25% (specification is 0.3%)
 - All aggregates coated after mixing
- Final production
 - Maintained asphalt content and slight increase filler content
 - Increased filler to help close up air voids and reduce draindown
 - Contractor and agency extremely happy with final product

Design Example #2 – "Sometimes You Need a Few Trials"

- Determine Optimal Temperature Range for Fiberless SMA in VA
 - 12.5mm NMAS SMA
 - 6.7% Total Asphalt Content
 - PG76-22
 - 15% RAP
 - o.4% Total Binder Weight Contribution
 - o.3% Cellulose Fibers
 - o.14% draindown

Washed Gradation			
Scree	Screen		
2″	2″ 50.00		
1 ¹ /2″	37.50	100	
1″	25.00	100	
3⁄4″	19.00	100	
1⁄2″	12.50	95	
3/8″	9.50	75	
#4	4.75	30	
#8	2.36	19	
#16	1.18	14	
#30	0.600	13	
#50	0.300	12	
#100	0.150	11	
#200	0.075	8.5	

Design Example #2 – Compacted Air Voids vs Draindown



Design Example #2 – "Sometimes You Need a Few Trials"

1st Trial Results

- Testing at lower temps showed that air voids were slightly low and draindown was still above specification
 - Coating easily met at all temperatures
- For this particular mix, the elimination of fibers is creating an slightly over-asphalted mix
- For Trial #2, asphalt content was reduced 0.3% (same % as original fibers) and testing was again conducted

Design Example #2 – 2nd Trial Results

Design Example #2 – Finals Results

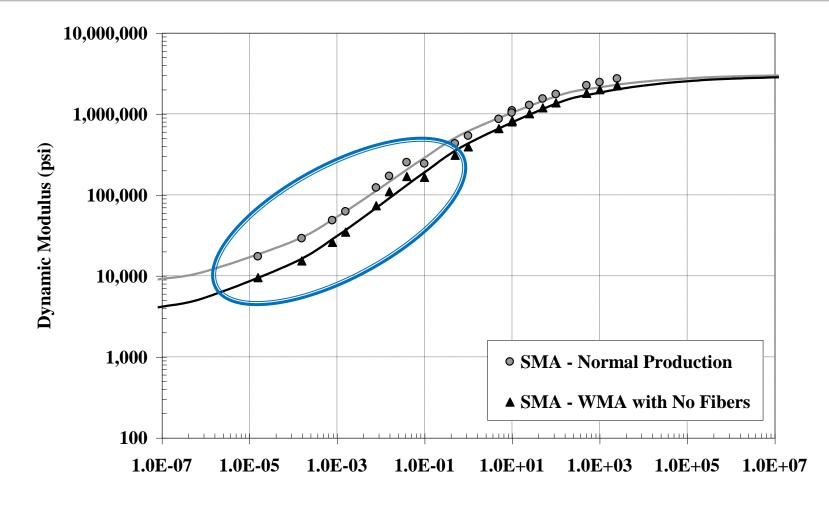
- For the Design Example #2 SMA, eliminating fibers created an over-asphalted condition
 - Fibers creating surface area taking up additional asphalt
- 2nd trial showed a reduction of 0.3% asphalt was required to maintain draindown
- Supplier also slightly increased dust to help tighten up air voids

Fiberless SMA Field and Laboratory Performance

Project #1 – New Jersey, Route 1 SB

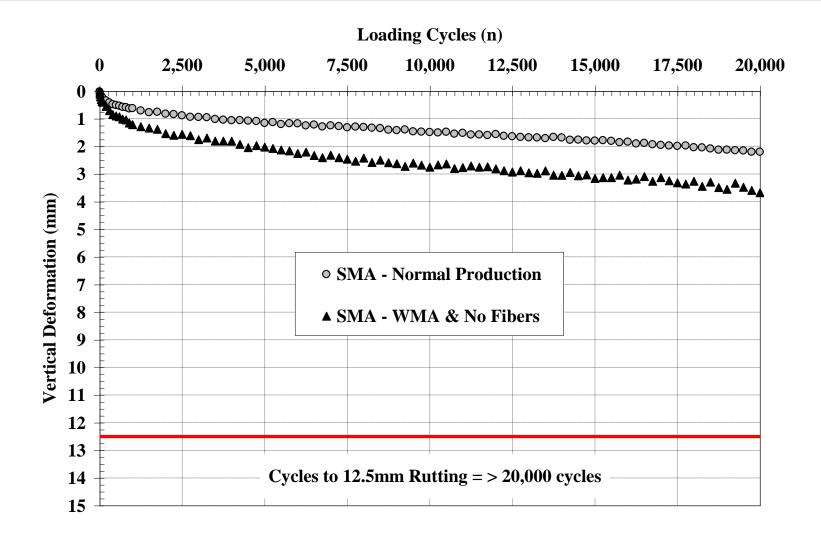
- First project to look at fiberless
 SMA with WMA (2009)
- Location: Rt 1, SB in New Jersey (MP 6.5 to 7.8)
 - Rt 1 NB constructed with conventional SMA
- Trap Rock aggregate
- 12.5mm SMA
 - 6.4% AC content-Same w/o fibers
 - PG76-22
 - o.3% cellulose fibers

Washed Gradation			
Scree	Screen		
2″	50.00	100	
1 ¹ /2″	37.50	100	
1″	25.00	100	
3⁄4″	19.00	100	
1⁄2″	12.50	94	
3/8″	9.50	63	
#4	4.75	28.2	
#8	2.36	19.8	
#200	0.075	8.8	


Project #1–NJ, Rt. 1 SB

Air voids ranged between 3.8% to 4.4%
Aggregate coating no issue

Mixture ID	Temperature (F)		Percent
	Mixing	Testing	Draindown
Normal SMA	325	325	0.08
WMA SMA #1 (No Fibers)	325	325	0.19
WMA SMA #2 (No Fibers)	290	290	0.08
WMA SMA #3 (No Fibers)	255	255	0.06

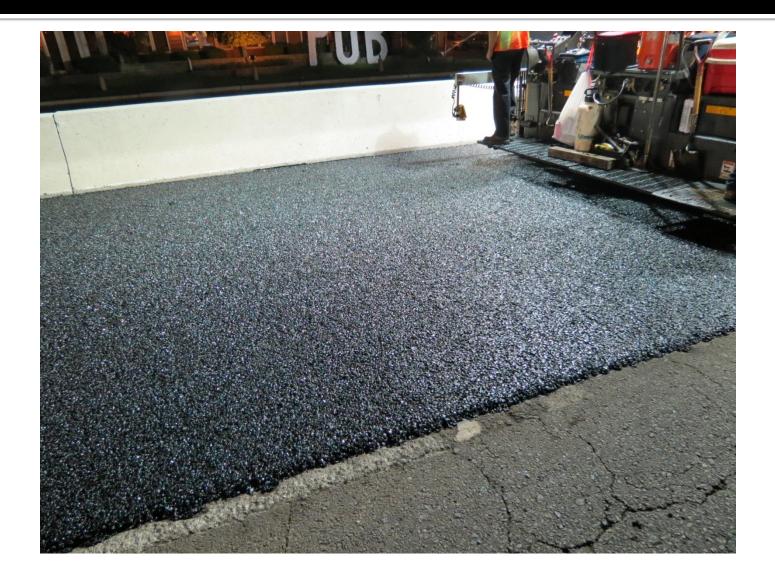

Supplier did own assessment of compacted air voids

NJ Rt 1 - Dynamic Modulus for Mixture Stiffness

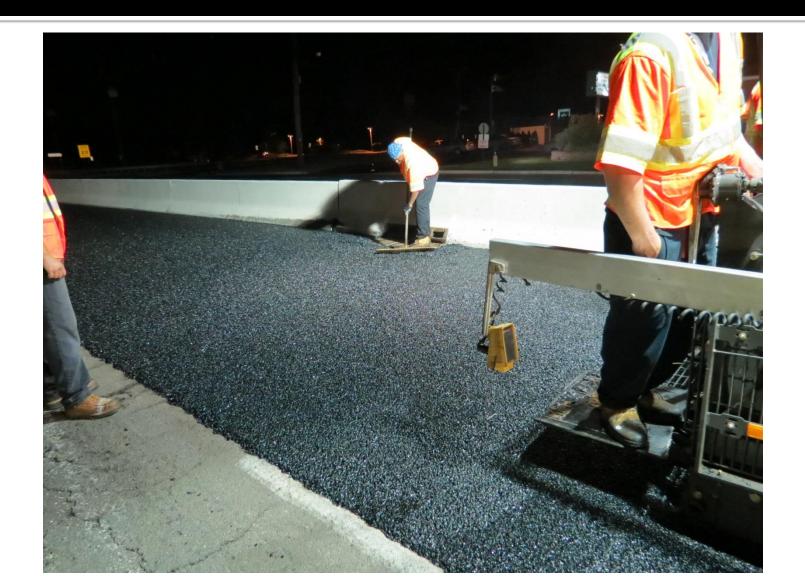
Loading Frequency (Hz)

NJ Rt 1 – Wet Hamburg Wheel Tracking for Stripping & Rutting Potential

NJ Rt 1 - Overlay Tester for Fatigue Cracking Potential


SMA - WMA with No Fibers			
Sample ID	Temp (F)	Displacement (inches)	Fatigue Life (cycles)
# 1	77 F		10,472
# 2		0.025"	27,855
# 3			16,255
Average (Trimmed Mean) =			18,194

SMA - Normal Production			
Sample ID	Temp (F)	Displacement (inches)	Fatigue Life (cycles)
# 1	77 F		2,126
# 2		0.025"	2,425
# 3	*		1,458
Average (Trimmed Mean) =		2,003	


Project #1 – New Jersey

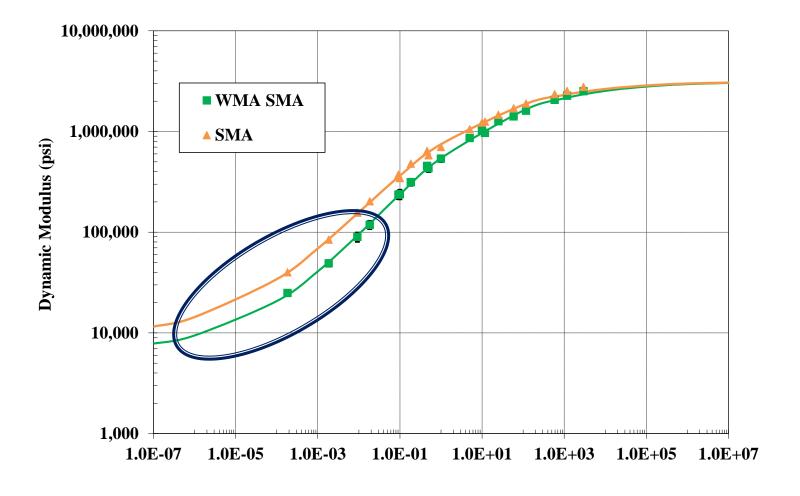
Project #1 – New Jersey

Project #1 – New Jersey

NJ, Rt 1 SB – Final Field Density

- Field Core Density
 - Conventional SMA Density = 5.13% air voids
 - Produced over 315F
 - WMA SMA Density = 5.12% air voids
 - Produced under 280F
 - Both mixtures were identical with regard to density

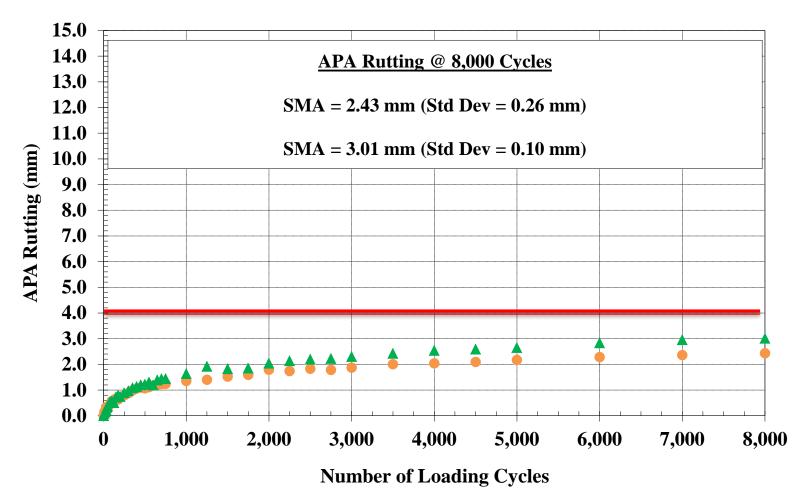
Fiberless using WMA SMA Project #1 – New Jersey Rt 1 Southbound

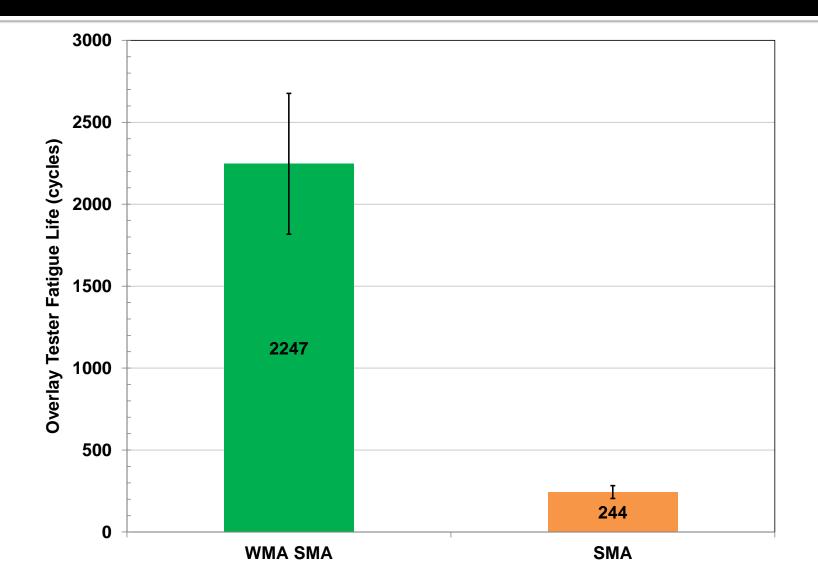

- For initial pilot, reduction in production temp successfully reduced draindown when fibers eliminated
 - Produced @ 275 to 285°F
 - 1st Roller Pass @ 270 to 280°F
- Field densities of with and without fibers statistically equal
- Mixture pérformance looked good
 - Lower production temps not aging binder as normal
 - Stiffness slightly lower
 - Large increase in fatigue resistance (higher effective AC?)

One Complaint!

Project #2 – New Jersey

- Fiberless SMA (2012) NB Rt 1
 - Approximately MP 28.5 to 32.1
- Supplier conducted draindown and compaction on own
 - AC% = 6.1%; no fibers; PG76-22 asphalt binder, o.6%
 WMA
- Produced @ 275 to 285F
- 1st Roller Pass @ 270 to 280F
 - Average of 5% air voids in the field
- Rutgers received loose mix to evaluate/compare general performance properties


Project #2 – NJ – Mixture Stiffness


Loading Frequency (Hz)

Project #2 – NJ - Rutting Resistance

64°C Test Temp.; 100psi Hose Pressure; 100 lb Load Load

Project #2 – NJ – Fatigue Resistance

Project #2 – New Jersey

- Mixture performance between SMA and WMA-SMA similar
 - Decreased production temps results in slightly less stiff WMA fiberless mixture
 - Eliminating fibers and reducing temps results in superior fatigue resistance
- Properly designed SMA with PMA and stone-onstone contact (assuming quality stone) should not rut

Supplier and Contractor Comments/Opinions

Supplier Opinions – Wayne Byard, Trap Rock Industries, NJ

- Produced 1st Fiberless SMA and 4 to 5 projects since
 - Mix Design
 - Able to reduce asphalt binder content by 0.4% while still improving fatigue properties. Reduction in binder more than paid for addition of WMA additive
 - Fiberless eliminated the need for purchasing, delivering, stockpiling and protecting fibers – no rental costs
 - Can take an order of SMA one day and start producing the next
 - No plant modifications necessary
 - Field/Compaction
 - Workability (hand work) and compaction excellent, even as low as 265F in the northeast
 - Ship 1st load or two at normal temp to heat up MTV and paver, then go back to warm mix temps
 - No issues with material sticking to truck bodies

Supplier Opinions – Tilcon Mt. Hope, NJ

- Produced two Fiberless SMA projects
 - Mix Design
 - Reduced asphalt content by 0.4% lab testing at Rutgers showed good fatigue cracking performance
 - Saved costs on both no fibers and reduced asphalt content
 - No plant modifications necessary during production
 - Production 280 to 290F with PG76-22 compared to > 325F
 - Field/Compaction
 - Better workability than conventional SMA
 - Truck bodies clean
 - Compaction still as low as 170F densities better than 94%
 Gmm

VA Route 29 Fiberless SMA Trial Paved in 2013

Field Core Evaluation

VA Route 29 Project Overview

- VDOT and Superior Paving constructed a fiberless SMA as a trial
- 1,100 tons of fiberless SMA in the SB (left) lane
- Volumetric properties were in specification; no issues with density or drain down issues
- Superior lowered plant temps by ~50°F by adding WMA when removing fibers
- Plant production 285°F 290F
- Roadway production 275°F 280°F
- When using WMA and no fibers:
 - lower cost per mix ton
 - increased plant production
 - reduced mixing time

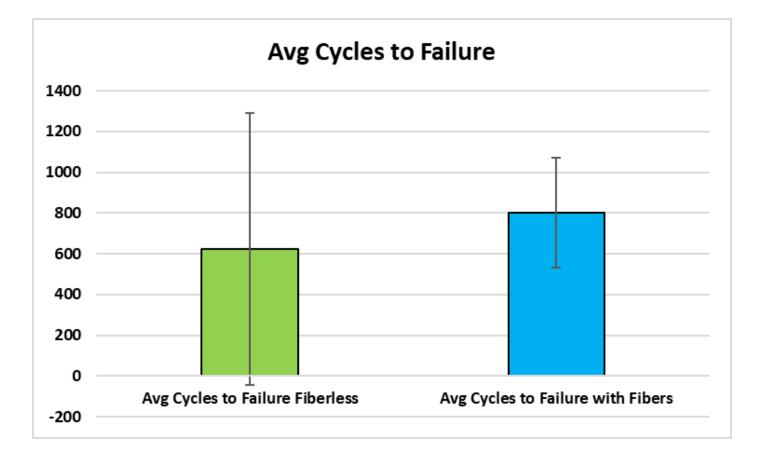
Mix Designs

FIBERLESS

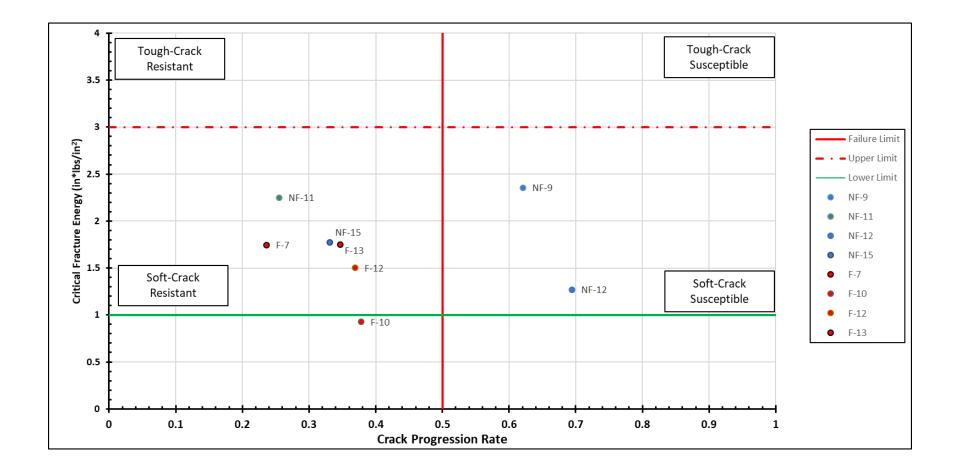
- 15% RAP
- 9.6% P200
- 6.0% AC
- PG 76-22
- 0.6% WMA

CONVENTIONAL

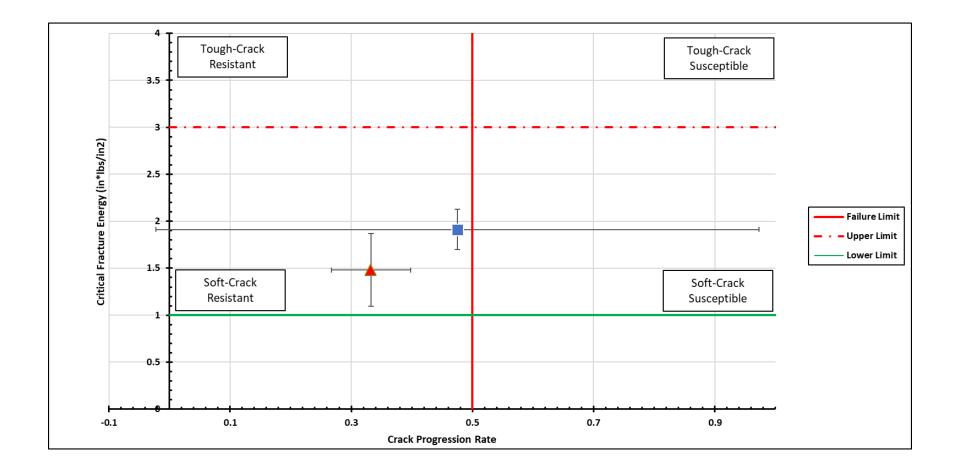
- 12% RAP
- 9.5% P200
- 6.3% AC
- PG 76-22
- 0.3% Cellulose Fibers
- 0.3% LAS

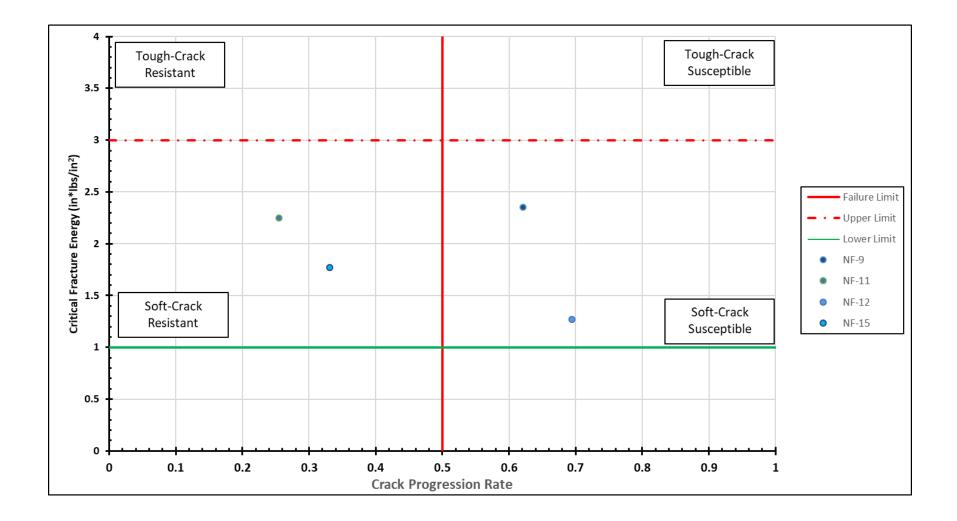

Road Core E&R Binder Grade, %AC

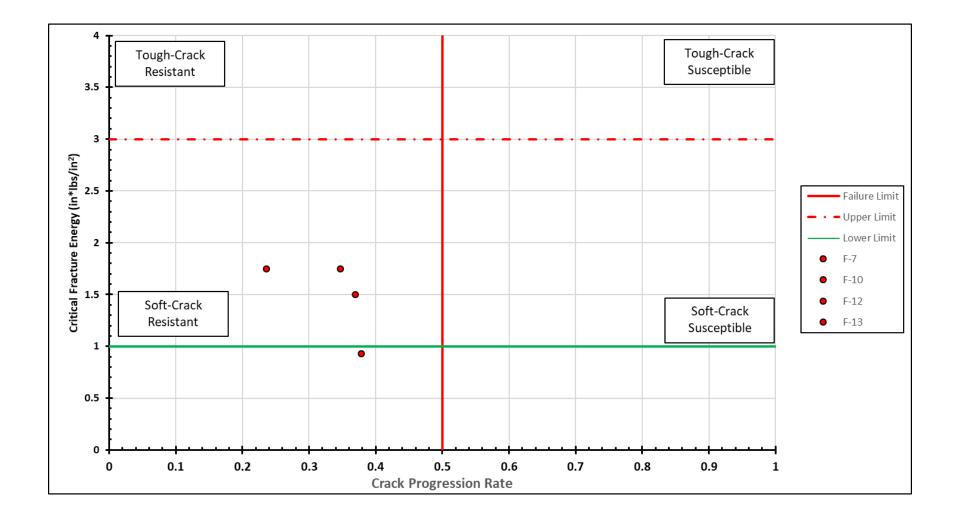
100.0 80.7 77.9 80.0 60.0 40.0 20.0 5.43% AC 6.07% AC PG 76-22 PG 76-16 0.0 -20.0 -21.4 -23.2 -40.0 Fiberless w/ Fibers


VA Rt 29 Cores Binder E&R, AC%

■ PG T High failure, C ■ PG T low failure, PAV20, C


Overlay Test TEX-248-F


Overlay Test TEX-248-F (all data)


Overlay Test TEX-248-F (All Data)

Overlay Test TEX-248-F (Fiber-less)

Overlay Test TEX-248-F (with Fibers)

Questions?